Sciences summary, discussion items and homeworks

Asantha Cooray (UC Irvine)

Margaret Meixner (STScI)

Sciences

- Great science ideas. And lots of ideas.
- ALMA had 3 key science goals. JWST? WFIRST?
- We need to do a better job connecting to a post-WFIRST and post-JWST era.
- We need a mechanism to sub-select the large number of "sciences goals" down to a few key questions.
- Common science themes are probably easy to convert to high-level science requirements. (?)
- Several clear common themes emerged from talks yesterday (without any coordination between the groups).
- We need an elevator pitch. Not there yet.
- Can we use a set of clear well-defined questions ("musts") to help guide the architecture selections?

- Origin of Earth's water: A census of D/H in 100s of comets and TNOs (plus C,N,Os+). [- follow-up of LSST comets?]
- Spatial distribution? 100 necessary?
- Census of total water content for 1000s of proto-planetary disks. - can separate warm, ice and snow-line with FIR only.
- Focus on water contain other volatiles, NH3 (Klaus)
- Do a wide range of stars, M-dwarfs to solar mass
- Across all evolutionary stages, across stellar mass range, ~500 pc.
- 1000 not defined!
- Building blocks habitable planets (Margaret)
- Tracing the ingredients of habitable worlds (Ted)
- Learning what they are made of. ALMA is doing.
- Minimum mass solar nebula.

- How common are Jupiter and Saturns in other exoplanet systems?
- CO2 cool planets
- NH3 Jupiter types
- FIR is not about how common. Characterization of cool planets
 300K area. Other methods get hot things.
- Using disk structure to count planets. WFIRST will do a microlensing survey and get statistics. Additional room?
- Debris disk looking at younger ones?
- Spectroscopy/direct imaging....
- mid-IR characterizing greenhouse effect in extrasolar planets

- Time variation of mass accretion across the Galactic plane.
- not clear if this is helpful scientifically for SF
- Star-formation?
- Total energy budget of the galaxy.
- Energy of the ISM.
- Magnetic fields and polarization.
- [to other groups: polarization sciences?]
- SF as a function of environment.

- From gas to stars and blackholes: growth and evolution of galaxies over the full cosmic history. [FIR can do BHs and SFRs at the same time! - aim more on Milky Way-like at z=1,2,3,4,5]
- Connect galaxies from local universe to formation epoch.
- Not a JWST JWST will get stellar mass.
- WFIRST Halpha/Hbeta –
- Spectroscopy, PAH, OIV, Ne, S,.... -

("musts"?; can we convert these to killer questions?)

- Beginnings of Chemistry: the formation of heavy elements, dust and molecules. [not sure what the exact observable here is?]
 The epoch of dust formation in the Universe...
- JWST followup? This is not a JWST topic. JWST will provide targets.
- What are z=10 JWST-detected galaxies?
- Density, metallicity. SFR,
- Dust molecule ALMA; PAHs. Unique for FIR.?
- Angular resolution needed to separate JWST-detected galaxies

• _

- Detecting the first galaxy formation sites via H2 cooling during the cosmic dark ages. [pushes beyond JWST]
- Homework to perfect the calculations related to H2 and HD.